

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-04/0092 of 4 August 2021

ETA-04/0092 issued on 13 April 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Injection System VMZ
Product family to which the construction product belongs	Torque controlled bonded anchor with anchor rod VMZ-A and internal threaded rod VMZ-IG for use in concrete
Manufacturer	MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach
Manufacturing plant	Werk 1, D Werk 2, D Plant 1, D Plant 2, D
This European Technical Assessment contains	32 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330499-01-0601 Edition 04/2020

This version replaces

European Technical Assessment ETA-04/0092 English translation prepared by DIBt

Page 2 of 32 | 4 August 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 32 | 4 August 2021

European Technical Assessment ETA-04/0092 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Injection System VMZ is a torque controlled bonded anchor consisting of a cartridge with injection mortar VMZ or VMZ Express and an anchor rod with expansion cones and external connection thread (type VMZ-A) or with internal connection thread (type VMZ-IG).

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 – C3, C10, B5 – B6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C4 – C5, C11
Displacements under short-term and long-term loading	See Annex C8 – C9, C11
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C6 – C9

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

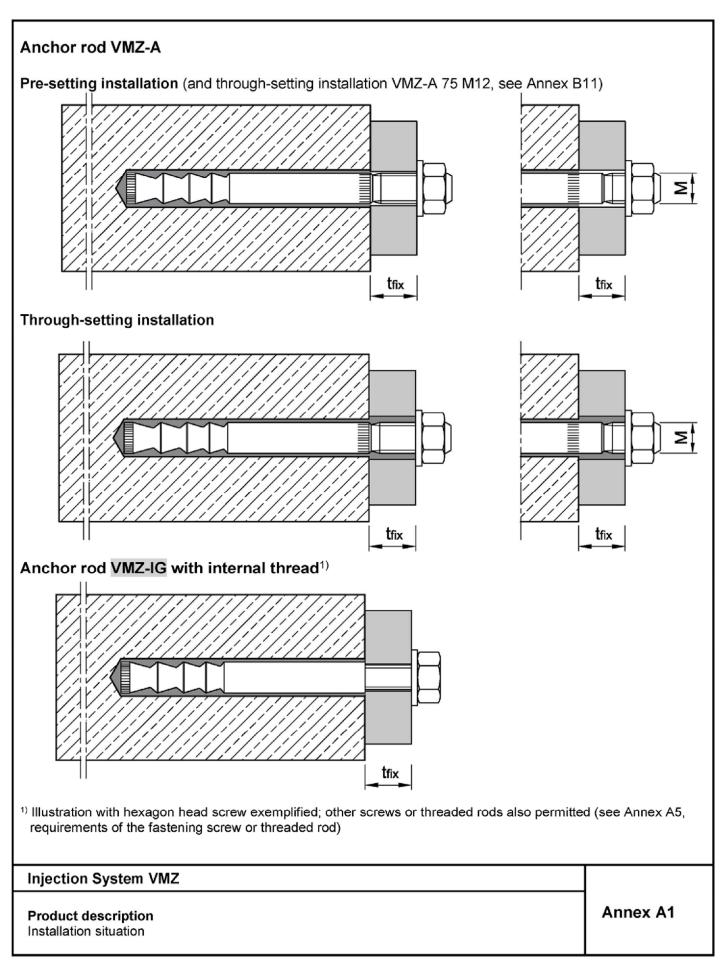
European Technical Assessment ETA-04/0092

Page 4 of 32 | 4 August 2021

English translation prepared by DIBt

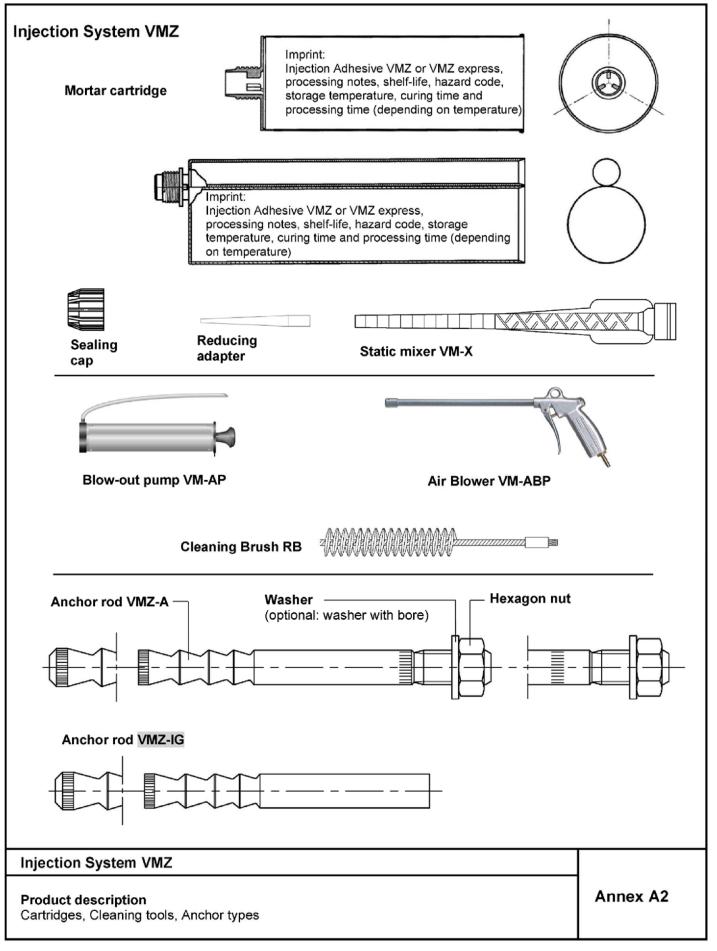
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 330499-01-0601 the applicable European legal act is: [96/582/EC] The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 4 August 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Lange

Page 6 of European Technical Assessment ETA-04/0092 of 4 August 2021

1 2a 2b	Designation	_ ≥ 5μm	≥	hot-o dalvar					Stainle	ss ste	el	High o	corrosi	ion
2a 2b	Anchor rod		galvanised galvanised sherardized									esistan		HCR
2a 2b	Anchor rod	Steel acc. to EN ISO 683-1:2018 Stainless steel, 1.4401, 1.4404, res												
2h		galvanised hot-dip galvanised and sherardized and exacted and sherardized EN 10088:2014, E										1.4529, 1.4565 EN 10088:2014, coated		
2n	Pa Washer High												osion steel	
	Washer with bore													
	Broporty class & see, to ENUSO 808 2:2012 ENUSO 3506-2: E													2020, 0,
3	Hexagon nut	galvanised		ot-dip alvanis	ed	hot	erardize -dip vanisec	d or	A4-80 1.4401, EN 1008	1.4571	res 1.4)h corro sistant : 1529, 1 10088	steel .4565	
	Mortar cartridge	Vinylester r	esin, st	tyrene	free, m	iixing r	atio 1:1	0						
80 VMZ 12 25	identifying ma anchorage de fastener iden size of thread maximum thio	epth tity I	-	•	t _{fix}	- - - - - - - - - - - - - - - - - - -	Pa)		t _{fix}	- J 		 Marking – of length	2b	
A4 HCR	additional ma additional ma	rking of stair	less ste	eel	-					Washe	er with	bore		
Markin Length	ng of length	B ≥ 50,8	C 63,5	D 76,2	E 88,9	F 101,6	G 114,3	H 127,0	I 139,7	J 152,4	K 165,1	L 177,8	M 190,5	N 203,2
anchor				88,9	101,6	114,3	127,0	139,7		165,1	177,8	190,5	203,2	215,9
	ng of length	0	P	Q	R	S	T	U	V	W	X	Y	Z	>Z
Length anchor				241,3 254,0	254,0 279,4	279,4 304,8	304,8 330,2	330,2 355,6		381,0 406,4	406,4 431,8	431,8 457,2	457,2 482,6	482,6
Injec	tion System	VMZ												

Та	ble	A2: Dimensions of a	nchor	rod, ۱	/MZ-A	M8 –	M12						
Ar	ncho	rsize VMZ-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Ac	ditio	nal marking	1	2	1	2	1	2	3	4	5	6	7
		Thread	M	18	М	10				M12			
	rod	Number of cones	2	3	3	3	3	3	4	4	6	6	6
1		d _k =	8,0	8,0	9,7	9,7	10,7	12,5	12,5	12,5	12,5	12,5	12,5
	Anchor	Length L (with washer 2a)	52+t _{fix}	63+t _{fix}	75+t _{fix}	90+t _{fix}	95+t _{fix}	90+t _{fix}	100 +t _{fix}	115 +t _{fix}	120 +t _{fix}	130 +t _{fix}	145 +t _{fix}
		$\begin{array}{c} \text{Reduction } t_{\text{fix}^{1)}} \\ \text{(with washer with bore 2b)} \end{array}$	3,4	3,4	3	3	2,5	2,5	2,5	2,5	2,5	2,5	2,5
3	Hex	agon nut SW	13	13	17	17	19	19	19	19	19	19	19

¹⁾ When using washer with bore (2b) the thickness of fixture is reduced by the specified value

Dimensions in mm

Table A3: Dimensions of anchor rod, VMZ-A M16 – M24

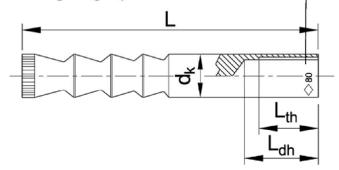
A	1chor s	ize VMZ-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
A	ditional	marking	1	2	3	4	5	1	2	3	1	2	3
		Thread			M16				M20			M24	
	g	Number of cones	3	4	6	6	6	3	6	6	6	6	6
1	lor rod	dk =	16,5	16,5	16,5	16,5	16,5	19,7	22,0	22,0	24,0	24,0	24,0
	Anchor	Length L (with washer 2a)	114 +t _{fix}	129 +t _{fix}	150 +t _{fix}	170 +t _{fix}	185 +t _{fix}	143 +t _{fix}	203 +t _{fix}	223 +t _{fix}	210 +t _{fix}	240 +t _{fix}	265 +t _{fix}
-		$\begin{array}{c} \text{Reduction } t_{\text{fix}^{1}} \\ \text{(with washer with bore 2b)} \end{array}$	2	2	2	2	2	2	2	2	2	2	2
3	Hexago	on nut SW	24	24	24	24	24	30	30	30	36	36	36

¹⁾ When using washer with bore (2b) the thickness of fixture is reduced by the specified value

Dimensions in mm

Injection System VMZ

Product description VMZ-A: Anchor dimensions Annex A4


Page 9 of European Technical Assessment ETA-04/0092 of 4 August 2021

English translation prepared by DIBt

Tab	Table A4: Materials VMZ-IG												
Part	Designation	Steel, zinc plated ≥ 5µm	Stainless steel A4 (CRC III)	High corrosion resistant steel HCR (CRC V)									
1	Anchor rod	Steel acc. to EN ISO 683-4:2018, galvanized and coated	Stainless steel, 1.4401, 1.4404, 1.4571 acc. to EN 10088:2014, coated	High corrosion resistant steel 1.4529, 1.4565 acc. to EN 10088:2014, coated									
4	Mortar cartridge	Vinylest	er resin, styrene free, mixing ra	atio 1:10									

Marking: e.g. > 80 VMZ M10-

identifying mark of manufacturing plant

- 80 anchorage depth
- VMZ fastener identity
- M10 size of internal thread
- A4 additional marking of stainless steel

HCR additional marking of high corrosion resistant steel

Table A5: Dimensions of anchor rod VMZ-IG

Anchor size	VMZ	Z-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Internal thread		-	M	16	M	18	М	10		M12		M	16	M20
Number of cones		-	2	3	3	3	3	4	3	4	6	3	6	6
Outer diameter	dĸ	[mm]	8,0	8,0	9,7	10,7	12,5	12,5	16,5	16,5	16,5	19,7	22,0	24,0
Thread length	L_{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Total length	L	[mm]	41	52	63	78	74	84	94	109	130	120	180	182
Length identifier		[mm]	L _{dh} < 18	L _{dh} > 19	L _{dh} < 22,5	L _{dh} > 23,5	L _{dh} < 27	L _{dh} > 28	L _{dh} < 31,5	32,5 < L _{dh} < 34,5	L _{dh} > 35,5	d _k < 21	d _k > 21	-

Requirements of the fastening screw or the threaded rod and nut

- Minimum screw-in depth Lsdmin see Table B7
- The length of screw or the threaded rod must depending on the thickness of fixture t_{fix}, available thread length L_{th} (=maximum available thread length, see Table B7) and the minimum screw-in depth L_{sdmin} be established
- A₅ > 8 % ductility
- Material

Z62078.21

- Steel, zinc plated: Minimum property class 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012
- Stainless steel A4: Minimum property class 70 according to EN ISO 3506:2020
- High corrosion resistant steel (HCR): Minimum property class 70 according to EN ISO 3506:2020

Injection System VMZ

Product description

VMZ-IG: Materials, Marking, Anchor dimensions

Injection System VMZ with and	chor rod	VMZ-A	M8	M10	M12	M16	M20	M24
Static and quasi-static action					·	/		
Seismic action (Category C1 + 0	C2)		-	✓	×	✓	✓	✓
Cracked or uncracked concrete					v	/		
Strength classes acc. to EN 206	S-1:2013+A1:2	016			C20/25 t	o C50/60		
Reinforced or unreinforced norn to EN 206-1: 2013+A1:2016	nal weight con	crete acc.			v	/		
Temperature Range I	-40 °	C to +80 °C	m	ax. short ax. long t	erm temp	erature +	50 °C	
Temperature Range II		to +120 °C		ax. short ax. long t				
		nmer drill bit			•	(
Making of drill hole		um drill bit ¹⁾	-	~	~	~	~	 ✓
ç	(seismic actio		-	1	~	~	1	~
		Iry concrete			•	(
nstallation allowable in		et concrete			•			
	wate	er-filled hole	-	-	√2)	✓	✓	✓
Overhead installation					۰	/		
Pre-setting installation						(
Trough-setting installation			-	✓	~	~	✓	✓
Exception: VMZ-A 75 M12 (Installa	ation in water-fille	ith suction or H ed drill hole is r VMZ-IG			M10	M12	M16	M20
Exception: VMZ-A 75 M12 (Installa	ation in water-fille	ed drill hole is r	not allowe	d)		M12	M16	M20
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action	ation in water-fille	ed drill hole is r	not allowe	d)			M16	M20
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0 Cracked and uncracked concret	ation in water-fille chor rod C2) te	ed drill hole is r	not allowe	d)	· · · · · · · · · · · · · · · · · · ·	-	M16	M20
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0 Cracked and uncracked concret Strength classes acc. to EN 200	ation in water-fille chor rod C2) te S-1:2013+A1:20	VMZ-IG	not allowe	d)	· · · · · · · · · · · · · · · · · · ·	-	M16	M20
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0 Cracked and uncracked concret Strength classes acc. to EN 200 Reinforced or unreinforced norm	ation in water-fille chor rod C2) te 5-1:2013+A1:20 nal weight cond	VMZ-IG	M6	d) M8	C20/25 tr	- - o C50/60		M20
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0 Cracked and uncracked concret Strength classes acc. to EN 200 Reinforced or unreinforced norm acc. to EN 206-1:2013+A1:2010	ation in water-fille chor rod C2) te S-1:2013+A1:20 nal weight cone	VMZ-IG	mot allower M6 m m	d) M8 ax. short ax. long to	C20/25 to term temp erm temp	o C50/60 / / perature +	⊦80 °C 50 °C	M20
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0 Cracked and uncracked concret Strength classes acc. to EN 200 Reinforced or unreinforced norm acc. to EN 206-1:2013+A1:2010 Temperature Range I	ation in water-fille chor rod C2) te 5-1:2013+A1:20 nal weight cond -40 °C	VMZ-IG VMZ-IG 016 crete C to +80 °C to +120 °C	mot allower M6 m m m m	d) M8 ax. short	C20/25 tr C20/25 tr term temp erm temp term temp	o C50/60 / / perature + erature +	+80 °C 50 °C +120 °C	M20
Exception: VMZ-A 75 M12 (Installan njection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0) Cracked and uncracked concred Strength classes acc. to EN 206 Reinforced or unreinforced norm acc. to EN 206-1:2013+A1:2016 Temperature Range I Temperature Range II	ation in water-fille chor rod C2) te S-1:2013+A1:20 nal weight cond -40 °C -40 °C Ham	VMZ-IG VMZ-IG 016 crete C to +80 °C to +120 °C mmer drill bit	M6 M6 m m m	d) M8 ax. short ax. long to ax. short ax. long to	C20/25 to C20/25 to term temp term temp term temp	o C50/60 / / erature + perature + erature +	+80 °C 50 °C +120 °C 72 °C	
Exception: VMZ-A 75 M12 (Installan njection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0) Cracked and uncracked concred Strength classes acc. to EN 206 Reinforced or unreinforced norm acc. to EN 206-1:2013+A1:2016 Temperature Range I Femperature Range II	ation in water-fille chor rod C2) te 5-1:2013+A1:20 nal weight cond 5 -40 °C -40 °C Ham Vacu	VMZ-IG VMZ-IG 016 crete C to +80 °C to +120 °C to +120 °C mmer drill bit um drill bit ¹⁾	mot allower M6 m m m m	d) M8 ax. short ax. long t ax. long t	C20/25 to term temp erm temp term temp term temp	o C50/60	+80 °C 50 °C ⊦120 °C 72 °C	
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0 Cracked and uncracked concred Strength classes acc. to EN 206 Reinforced or unreinforced norm acc. to EN 206-1:2013+A1:2016 Temperature Range I Temperature Range II	ation in water-fille chor rod C2) te 5-1:2013+A1:20 nal weight cond -40 °C -40 °C Ham Vacu Diam	VMZ-IG VMZ-IG 016 crete C to +80 °C to +120 °C mer drill bit um drill bit ¹⁾ nond drill bit	M6 M6 m m m	d) M8 ax. short ax. long to ax. short ax. long to	C20/25 tr C20/25 tr term temp term temp term temp erm temp	o C50/60	+80 °C 50 °C +120 °C 72 °C	
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0 Cracked and uncracked concrei Strength classes acc. to EN 206 Reinforced or unreinforced norm acc. to EN 206-1:2013+A1:2016 Temperature Range I Temperature Range II	ation in water-fille chor rod C2) te 5-1:2013+A1:20 nal weight cond -40 °C -40 °C Ham Vacu Diam	VMZ-IG VMZ-IG 016 crete C to +80 °C to +120 °C to +120 °C mer drill bit um drill bit nond drill bit	M6 M6 m m m	d) M8 ax. short ax. long t ax. long t	C20/25 to C20/25 to term temp term temp term temp	o C50/60 / perature + perature + perature + rature + / / / /	+80 °C 50 °C ⊦120 °C 72 °C	
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0 Cracked and uncracked concret Strength classes acc. to EN 206 Reinforced or unreinforced norm acc. to EN 206-1:2013+A1:2016 Temperature Range I Temperature Range II Making of drill hole	ation in water-fille chor rod C2) te 5-1:2013+A1:20 anal weight cond -40 °C -40 °C Ham Vacu Diam o W	VMZ-IG VMZ-IG 016 crete C to +80 °C to +120 °C to +120 °C mmer drill bit um drill bit ¹⁾ hond drill bit lry concrete vet concrete	M6 M6 m m m m - -	d) M8 ax. short ax. long to ax. short ax. long to ax. long to	C20/25 tr C20/25 tr term temp term temp term temp		+80 °C 50 °C +120 °C 72 °C ✓ ✓	✓ ✓ ✓
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0 Cracked and uncracked concret Strength classes acc. to EN 206 Reinforced or unreinforced norm acc. to EN 206-1:2013+A1:2016 Temperature Range I Temperature Range II Making of drill hole	ation in water-fille chor rod C2) te 5-1:2013+A1:20 anal weight cond -40 °C -40 °C Ham Vacu Diam o W	VMZ-IG VMZ-IG 016 crete C to +80 °C to +120 °C to +120 °C mer drill bit um drill bit nond drill bit	M6 M6 m m m	d) M8 ax. short ax. long t ax. long t	C20/25 term temp term temp term temp term temp	- - - - - - - - - - - - - -	+80 °C 50 °C ⊦120 °C 72 °C	
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0 Cracked and uncracked concre- Strength classes acc. to EN 206 Reinforced or unreinforced norm acc. to EN 206-1:2013+A1:2016 Temperature Range I Temperature Range II Making of drill hole	ation in water-fille chor rod C2) te 5-1:2013+A1:20 anal weight cond -40 °C -40 °C Ham Vacu Diam o W	VMZ-IG VMZ-IG 016 crete C to +80 °C to +120 °C to +120 °C mmer drill bit um drill bit ¹⁾ hond drill bit lry concrete vet concrete	M6 M6 m m m m - -	d) M8 ax. short ax. long to ax. short ax. long to ax. long to	C20/25 to term temp erm temp term temp term temp v v v v		+80 °C 50 °C +120 °C 72 °C ✓ ✓	✓ ✓ ✓
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0 Cracked and uncracked concress Strength classes acc. to EN 206 Reinforced or unreinforced normacc. to EN 206-1:2013+A1:2016 Temperature Range I Temperature Range II Making of drill hole	ation in water-fille chor rod C2) te 5-1:2013+A1:20 nal weight cond -40 °C -40 °C Ham Vacu Diam c wate	VMZ-IG VMZ-IG 016 crete C to +80 °C to +120 °C to +120 °C mmer drill bit um drill bit ¹⁾ nond drill bit try concrete vet concrete er-filled hole	M6 M6 m m m m m - -	d) M8 ax. short ax. long tr ax. short ax. long tr ax. long tr ax. long tr	C20/25 to term temp erm temp term temp term temp v v v v	- - - - - - - - - - - - - -	+80 °C 50 °C +120 °C 72 °C ✓ ✓	
Exception: VMZ-A 75 M12 (Installa Injection System VMZ with and Static and quasi-static action Seismic action (Category C1 + 0) Cracked and uncracked concreins Strength classes acc. to EN 206 Reinforced or unreinforced norm acc. to EN 206-1:2013+A1:2016 Temperature Range I Making of drill hole Installation allowable in Overhead installation Pre-setting installation e.g. MKT vacuum drill bit, Würth has	ation in water-fille chor rod C2) te 5-1:2013+A1:20 nal weight cond -40 °C -40 °C Ham Vacu Diam c wate	VMZ-IG VMZ-IG 016 crete C to +80 °C to +120 °C to +120 °C mmer drill bit um drill bit ¹⁾ nond drill bit try concrete vet concrete er-filled hole	M6 M6 m m m m m - -	d) M8 ax. short ax. long tr ax. short ax. long tr ax. long tr ax. long tr	C20/25 to term temp erm temp term temp term temp v v v v		+80 °C 50 °C +120 °C 72 °C ✓ ✓	

Specifications of intended use

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all versions VMZ-A and VMZ-IG
- For all other conditions: Intended use of materials according to Annex A3, Table A1 and Annex A5, Table A4 corresponding to the corrosion resistance class CRC to EN 1993-1-4:2015

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed in accordance with EN 1992-4:2018 and Technical Report TR 055.

Installation:

- Drill hole must be cleaned directly prior to installation of the anchor or the drill hole has to be protected
 against re-contamination in an appropriate way until dispensing the mortar in the drill hole.
- Water filled drill holes must not be polluted otherwise the cleaning of the drill hole must be repeated.
- The anchor component installation temperature shall be at least +5 °C; during curing of the injection mortar the temperature of the concrete must not fall below -15 °C.
- It must be ensured that icing does not occur in the drill hole.
- Optionally, the annular gap between anchor rod and fixture may be filled with injection adhesive VMZ using the washer with bore (Part 2b, Annex A3) instead of the washer (Part 2a, Annex A3).

Injection System VMZ

Intended use Specifications Annex B2

Temperature in the drill hole	Maximum working time	Minimum curing time dry concrete ¹⁾				
- 15 °C to - 10 °C	45 min	7 d				
-9°C to -5°C	45 min	10:30 h				
- 4 °C to - 1 °C	45 min	6:00 h				
0 °C to +4 °C	20 min	3:00 h				
+5 °C to +9 °C	12 min	2:00 h				
+10 °C to +19 °C	6 min	1:20 h				
+20 °C to +29 °C	4 min	45 min				
+30 °C to +34 °C	2 min	25 min				
+35 °C to +39 °C	1,4 min	20 min				
+ 40 °C	1,4 min	15 min				
Cartridge temperature	≥ 5	°C				

1) curing time in wet concrete shall be doubled

Table B2: Working and curing time VMZ express

Temperature in the drill hole	Maximum working time	Minimum curing time dry concrete ¹⁾
- 5 °C to - 1 °C	20 min	4:00 h
0 °C to +4 °C	10 min	2:00 h
+ 5 °C to + 9 °C	6 min	1:00 h
+10 °C to +19 °C	3 min	40 min
+20 °C to +29 °C	1 min	20 min
+ 30 °C	1 min	10 min
Cartridge temperature	≥ 5°	С

1) Curing time in wet concrete shall be doubled

Injection System VMZ

Intended use Working and curing time Annex B3

· · · · · · · · · · · · · · · · · · ·	size VMZ-A		M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Effective anchorage depth	h _{ef} ≥	[mm]	40	50	60	75	75	70	80	95	100	110	125
Nominal diameter of drill hole	d0 =	[mm]	10	10	12	12	12	14	14	14	14	14	14
Depth of drill hole	$h_0 \geq$	[mm]	42	55	65	80	80	75	85	100	105	115	130
Diameter of cleaning brush	D≥	[mm]	10,8	10,8	13,0	13,0	13,0	15,0	15,0	15,0	15,0	15,0	15,0
Installation torque	T _{inst} ≤	[Nm]	10	10	15	15	25	25	25	25	30	30	30
Diameter of clearance hole ir	n the f	fixture									_	_	
Pre-setting installation	$d_{\rm f} \leq$	[mm]	9	9	12	12	14	14	14	14	14	14	14
Through-setting installation	${\bm d}_{f} \leq$	[mm]	-	-	14	14	14 ¹⁾ / 16	16	16	16	16	16	16
⁹ see Annex B11 Table B4: Installation Anchor size	-	metei IZ-A	rs, VN 90 M16	1Z-A I 105 M16	M16 – 125 M16	M24 145 M16	160 M16	115 M20	170 M20	190 M20	170 M24	200 M24	225 M24
									(LG)	(LG)	(LG)	(LG)	(LG
Effective anchorage depth Nominal diameter of drill	h _{ef} ≥ d₀ =	[mm] [mm]	90 18	105 18	125 18	145 18	160 18	115 22	170 24	190 24	170 26	200 26	225 26
hole			10 A										
Depth of drill hole	h₀≥	[mm]	98	113	133	153	168	120	180	200	185	215	240
Diameter of cleaning brush	D≥	[mm]	19,0	19,0	19,0	19,0	19,0	23,0	25,0	25,0	27,0	27,0	27,0
Installation torque T Diameter of clearance hole ir	$r_{inst} \leq r_{inst} \leq r_{inst}$	[Nm]	50	50	50	50	50	80	80	80	100	120	120
Pre-setting installation	d _f ≤	[mm]	18	18	18	18	18	22	24	24	26	26	26
Through-setting installation	d _f ≤	[mm]	20	20	20	20	20	24	(22) 26	(22) 26	28	28	28
Pre-setti	na in	stallati	ion				Г	Th	rough	-settin	a insta	Ilation	
size M8 to M16, M20 LG, M24 LG	7		si	ze 20 + M2 ≥ 0,5			N	ize 110 to M ⁴ 120 LG, I	16,	s	size M20 + M2		
h	the second secon					×		nular ga			-	tīx	≥
Injection System VMZ	- 1												

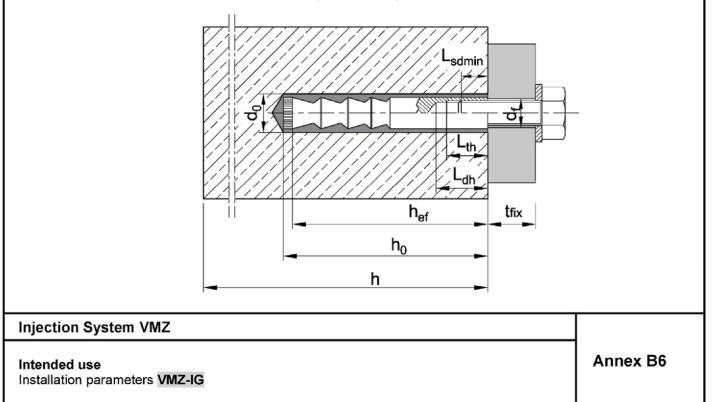
Anchor size	VMZ-A		40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Minimum thickness of concrete	h _{min}	[mm]	80	80	100	110 100 ¹⁾	110	110	110	130 125 ¹⁾	130	140	160
Cracked concrete													
Minimum spacing	Smin	[mm]	40	40	40	40	50	55	40	40	50	50	50
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	55	50	50	50	50	50
Uncracked concrete													
Minimum spacing	Smin	[mm]	40	40	50	50	50	55	55	55	802)	802)	802)
Minimum edge distance	Cmin	[mm]	40	40	50	50	50	55	55	55	55 ²⁾	55 ²⁾	55 ²⁾

Table B6: Minimum spacing and edge distance, VMZ-A M16 – M24

Anchor size	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Minimum thickness of concrete	h _{min}	[mm]	130	150	170 160 ¹⁾	190 180 ¹⁾	205 200 ¹⁾	160	230 220 ¹⁾	250 240 ¹⁾	230 220 ¹⁾	270 260 ¹⁾	300 290 ¹⁾
Cracked concrete													
Minimum spacing	Smin	[mm]	50	50	60	60	60	80	80	80	80	80	80
Minimum edge distance	Cmin	[mm]	50	50	60	60	60	80	80	80	80	80	80
Uncracked concrete													
Minimum spacing	Smin	[mm]	50	60	60	60	60	80	80	80	80	105	105
Minimum edge distance	Cmin	[mm]	50	60	60	60	60	80	80	80	80	105	105

¹⁾ The reverse of the concrete member must not be damaged after drilling and must be filled with high-strength mortar if drilled through.

 $^{2)}$ For an edge distance c \geq 80 mm a minimum spacing s_{min} = 55 mm is applicable

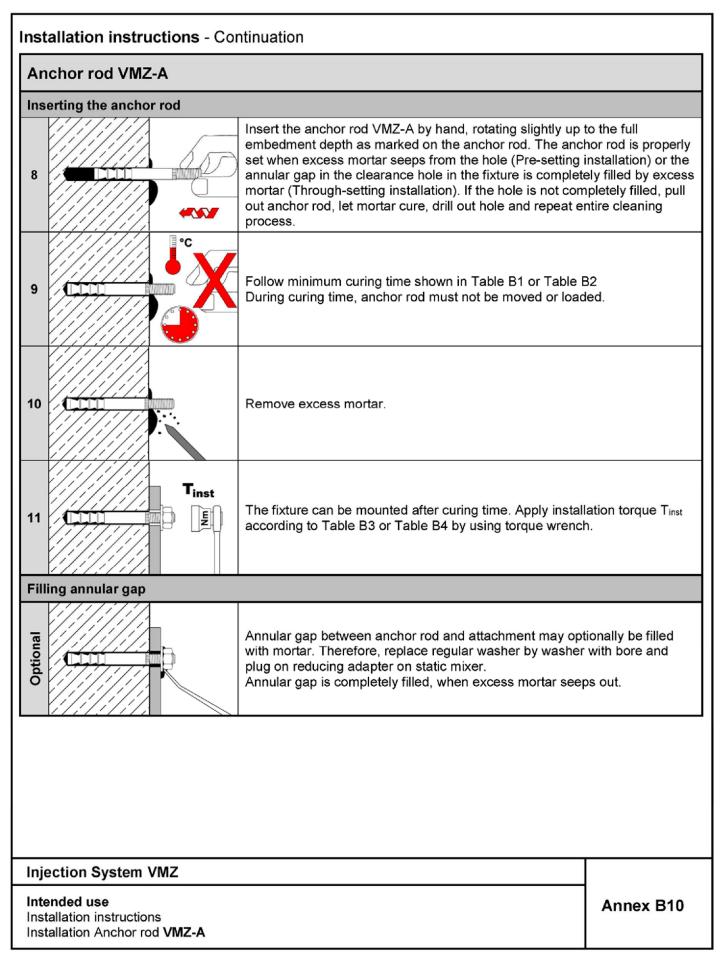

Injection System VMZ

Intended use Minimum spacing and edge distance, VMZ-A Annex B5

Table B7: Installation parameters VMZ-IG														
Anchor size	VI	/IZ-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
Nominal diameter of drill hole	d₀	[mm]	10	10	12	12	14	14	18	18	18	22	24	26
Depth of drill hole	$h_0 \geq$	[mm]	42	55	65	80	80	85	98	113	133	120	180	185
Diameter of cleaning brush	D≥	[mm]	10,8	10,8	13,0	13,0	15,0	15,0	19,0	19,0	19,0	23,0	25,0	27,0
Installation torque	T _{inst} ≤	[Nm]	8	8	10	10	15	15	25	25	25	50	50	80
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	7	ŋ	9	12	12	14	14	14	18	18	22
Available thread length	L _{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Minimum screw-in depth	L_{sdmin}	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Minimum thickness of concrete	h _{min}	[mm]	80	80	100	110	110	110	130	150	170 160 ¹⁾	160	230 220 ¹⁾	230 220 ¹⁾
Cracked concrete														
Minimum spacing	Smin	[mm]	40	40	40	40	55	40	50	50	60	80	80	80
Minimum edge distance	Cmin	[mm]	40	40	40	40	55	50	50	50	60	80	80	80
Uncracked concrete														
Minimum spacing	Smin	[mm]	40	40	50	50	55	55	50	60	60	80	80	80
Minimum edge distance	Cmin	[mm]	40	40	50	50	55	55	50	60	60	80	80	80

¹⁾ The reverse of the concrete member must not be damaged after drilling.

Ha	mmer drill bit		
Hol	e drilling		
1		Use hammer drill or compressed air drill with drill bit and depth g perpendicular to concrete surface.	auge. Drill
Clea	aning		
	Cleaning with compres	sed air (all sizes)	
2a	min. 6 bar 2x	Connect Air Blower to compressed air (min. 6 bar, oil-free). Ope blow out drill hole along the entire depth with back and forth mot times.	
3a		Check diameter of cleaning brush. If the brush can be pushed in without any resistance, it must be replaced. Chuck brush into dri on drill machine and brush drill hole back and forth along the en- at least two times while rotated by drill machine.	ill machine. Turn
la	min. 6 bar 2x	Connect Air Blower to compressed air (min. 6 bar, oil-free). Ope blow out drill hole along the entire depth with back and forth mot times.	
	Manual cleaning (altern	natively, up to drill hole diameter 18mm)	
2b	A CONTRACT OF THE OWNER OWNER OF THE OWNER OWNE	Blow out drill hole from the bottom with Blow-out pump at least t	wo times.
ßb		Check diameter of cleaning brush. If the brush can be pushed in without any resistance, it must be replaced. Chuck brush into dri on drill machine and brush drill hole back and forth along the en- at least two times while rotated by drill machine.	ill machine. Turn
1b		Blow out drill hole from the bottom with Blow-out pump at least t	wo times.
nje	ection System VMZ		
	nded use		Annex B7



Vacuum drill bit		
Hole drilling and cleaning		
	Drill hole perpendicular to concrete surface by using a vacuum Annex B1). The nominal underpressure of the vacuum cleane 230 mbar / 23kPa. Pay attention to the function of the dust extraction system Make sure the dust extraction is working properly throughout process.	er must be at least m!
Additional cleaning is not ne	cessary - continue with step 5!	
nstallation instructions -	Diamond drilling	
Diamond drilling		
Hole drilling		
	Use diamond drill with diamond drill bit and depth gauge. Drill perpendicular to concrete surface.	
Cleaning		
	Remove drill core at least up to the nominal hole depth and c depth.	heck drill hole
3	Flushing of drill hole: Flush drill hole with water, starting from the bottom, until clea the drill hole.	r water gets out of
4 Creation of the second secon	Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth w motion at least two times.	vith back and forth
njection System VMZ		

njection			
5	THE REPORT OF THE PARTY OF THE	Check expiration date on cartridge. Never use when expir from cartridge. Attach the supplied static mixer to the cartri working interruption longer than the recommended workin or Table B2) as well as for a new cartridge always use a r Never use static mixer without helix inside.	ridge. For every g time (Table B1
6	min.2x → min. 10cm	Insert cartridge in Dispenser. Before injecting discard mor strokes or a line of 10 cm) until it shows a consistent grey this mortar.	
7		Prior to injection, check if static mixer reaches the bottom it does not reach the bottom, plug Mixer Extension onto st to fill the drill hole properly. Fill hole with a sufficient quant mortar. Start from the bottom of the drill hole and work our air pockets.	atic mixer in order ity of injection
njection S	ystem VMZ		

 9 Filled, pull out anchor rod, let mortar cure, drill out hole and repeat the e cleaning process. The annular gap in the fixture does not have to be filled. 		th Anchor rod VMZ-A 75 M12 earance hole in the fixture df ≤ 14 mm								
 Insert the anchor rod VMZ-A by hand, rotating slightly up to the full embedment depth. Check if excess mortar seeps from the hole. If the hole is not completel filled, pull out anchor rod, let mortar cure, drill out hole and repeat the eleaning process. The annular gap in the fixture does not have to be filled. During curing time according to Table B1 or Table B2 anchor rod must be moved or loaded. Washer and nut can be mounted after curing time and backfilling of anoplate. Apply installation torque Timst according to Table B3 by using torque 	Nork step 1-7 as illustrated in	Annexes B7 – B9								
 9 10 10 10 10 11 11 12 13 14 14 15 16 16 17 18 19 19 19 10 11 12 12 13 14 14 15 15 16 17 17 18 19 19 10 10 10 10 10 11 12 13 14 14 15 15 16 17 18 18 19 19 10 10 10 10 10 11 12 14 14 15 15 16 17 18 18 19 19 10 11 11 12 12 13 14 14 15 14 15 16 16 17 18 18 18 18 19 10 10	8 Insert the anchor rod VMZ-A by hand, rotating slightly up to the full embedment depth.									
 be moved or loaded. Tinst Washer and nut can be mounted after curing time and backfilling of and plate. Apply installation torque T_{inst} according to Table B3 by using torque 	cleaning process.									
1 Washer and nut can be mounted after curing time and backfilling of and plate. Apply installation torque T _{inst} according to Table B3 by using torque	10 During curing time according to Table B1 or Table B2 anchor rod must not be moved or loaded.									
		Washer and nut can be mounted after curing time and backfilling of and plate. Apply installation torque T _{inst} according to Table B3 by using torq								
njection System VMZ	Injection System VMZ									

Installation instructions - Cor	ntinuation	
Anchor rod VMZ-IG		
Setting of anchor		
Work step 1-7 as illustrated in Anne	exes B7 – B9	
8	Insert the anchor rod VMZ-IG by hand, rotating slightly up below the concrete surface in the drill hole. The anchor ro when excess mortar seeps from the hole. If the hole is no pull out anchor rod, let mortar cure, drill out hole and repe cleaning process.	od is properly set t completely filled,
9	Follow minimum curing time shown in Table B1 and Table During curing time anchor rod must not be moved or load	
10	Remove excess mortar.	
11 Tinst	The fixture can be mounted after curing time. Apply instal according to Table B7 by using torque wrench.	lation torque T _{inst}
Injection System VMZ		
Intended use Installation instructions Anchor installation VMZ-IG		Annex B12

Anchor size			/MZ-A MZ-IG	all sizes						
Concrete cone	failure									
	uncracked concrete	k _{ucr.N}	[-]	11,0						
Factor for k₁	cracked concrete	Kcr,N	[-]	7,7						
Characteristic	edge distance	C _{cr,N}	[mm]	1,5 • h _{ef}						
Characteristic	spacing	Scr,N	[mm]	2 • C _{cr,N}						
Splitting For each proof of splitting failure, N _{Rk,sp} shall be calculated according to EN 1992-4:2018, equation (7.23). The higher value for N _{Rk,sp} of case 1 and case 2 may be applied for the design. Case 1										
		N10	1	and following to block						
Characteristic		N ⁰ Rk,sp	[kN]	see following tables						
	edge distance	C _{cr,sp}	[mm]	1,5 • h _{ef}						
Characteristic	spacing	Scr,sp	[mm]	2 · c _{cr,sp}						
Case 2		NI0	FL-NIT							
Characteristic		N ⁰ Rk,sp	[kN]	min [N _{Rk,p} ; N ⁰ _{Rk,c}]						
Characteristic	edge distance	Ccr,sp Scr,sp	[mm] [mm]	see following tables						
Injection Sy	stem VMZ									
Performance Characteristic	Annex C1									

Anchor size	v	MZ-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Installation factor	γinst	[-]						1,0					
Steel failure													
Characteristic resistance	N _{Rk,s}	[kN]	15	18	2	5	35	49	5	4		57	
Partial factor	γMs	[-]			•		•	1,5					
Pull-out													
Characteristic resistance (con	crete C2	0/25)											
uncracked 50°C / 80°C1)	[kN]	9	17,4	22,9	32,0	32,0	28,8	35,2	40	49,2	50	50
concrete 72°C / 120°C ¹	NRk,p	[kN]	6	9	16	16	16	16	25	25	30	30	30
cracked 50°C / 80°C1		[kN]	8,7	12,2	16,0	22,4	22,4	20,2	24,6	31,9	34,4	39,7	48,1
concrete 72°C / 120°C ¹) NRk,p	[kN]	5	7,5	12	12	12	16	20	20	30	30	30
Splitting													
Splitting for standard thicknes	ss of coi	ncrete	meml	ber									
Standard thickness of concrete	$h_{\text{min},1} \geq$	[mm]	1	00	120	150	150	140	160	190	200	220	250
Case 1					•		•						
Characteristic resistance (concrete C20/25)	N ⁰ Rk,sp	[kN]	7,5	9	16	20	2	0	35,2	30		40	
Case 2													
Characteristic edge distance	C _{cr,sp}	[mm]	3	h _{ef}	2,5h _{ef}	3,5h _{ef}	3,5h _{ef}	2,5h _{ef}	1,5h _{ef}	2,5h _{ef}	2 h _{ef}	3 h _{ef}	2,5h
Splitting for minimum thickne	ess of co	ncrete	mem	ber									
Minimum thickness of concrete	$h_{\text{min},2} \geq$	[mm]	ε	30	1(00		110		125	130	140	160
Case 1													
Characteristic resistance (concrete C20/25)	N ⁰ Rk,sp	[kN]	7,5	2)	1	6	16	20	25	25		30	
Case 2													
Characteristic edge distance	Ccr,sp	[mm]	3h _{ef}	3,5h _{ef}	3 h _{ef}	3,5h _{ef}	3,5	5h _{ef}	3h _{ef}	3,5h _{ef}		3h _{ef}	
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp} (Case 1)	Ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,5}$										
Concrete cone failure													
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80	95	100	110	125
¹⁾ Maximum long-term temperatu ²⁾ No performance assessed	re / Maxin	num sho	ort-tern	n tempe	erature				1	I		I	1
Injection System VMZ													
Performance Characteristic values for tensi	ion load		-Δ M8	- M12	,						Annex C2		

Deutsches Institut für Bautechnik

Anchor size	v	MZ-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Installation factor	γinst	[-]						1,0					
Steel failure													
Characteristic Steel, zi	nc plated	[kN]	88	95	1	11	97	96	18	38	222		
	4, HCR	[kN]	88	95	1	11	97	114	165			194	
Partial factor	γMs	[-]	1,5 1,68 1,5					5		1,5			
Pull-out													
Characteristic resistance	(concrete	C20/2	5)										
uncracked 50°C/80°	C ¹⁾ N.	[kN]	42,0	52,9	68,8	75	90	60,7	109,0	128,8	109,0	139,1	166,
concrete 72°C/120°	C ¹⁾ N _{Rk,p}	[kN]	25	35	5	0	53	40	7	5		95	
cracked 50°C/80°	C ¹⁾ N ₁₋₁	[kN]	29,4	37,1	48,1	60,1	69,7	42,5	76,3	90,2	76,3	97,4	116,
concrete 72°C/120°	C ¹⁾ N _{Rk,p}	[kN]	25	30	5	0	51	30	6	0		75	
Splitting													
Splitting for standard thic	kness o	f conc	rete										
Standard thickness of concrete	$h_{\text{min},1} \geq$	[mm]	180	200	250	290	320	230	340	380	340	400	450
Case 1			•					•					
Characteristic resistance (concrete C20/25)	N ⁰ Rk,sp	[kN]	40	5	0	60	80	60,7	109	115	109	139,1	140
Case 2													
Characteristic edge distance	Ccr,sp	[mm]			2 h _{ef}			1,5	h _{ef}	2 h _{ef}	1,5	h _{ef}	1,8 ł
Splitting for minimum thi	ckness o	f cond	rete										
Minimum thickness of concrete	$h_{\text{min},2} \geq$	[mm]	130	150	160	180	200	160	220	240	220	260	290
Case 1			•					•					
Characteristic resistance (concrete C20/25)	N ⁰ Rk,sp	[kN]	35	50	40	50	71	2)	7	5	109	11	15
Case 2													
Characteristic edge distance	Ccr,sp	[mm]	2,5	5h _{ef}	3h _{ef}	2,5	hef	2,5h _{ef}	2,6h _{ef}	2,2h _{ef}	2,6h _{ef}	2,2	2h _{ef}
ncreasing factor for NRk.p and N ⁰ Rk.sp (Case 1)	Ψ¢	[-]						$\left(\frac{\mathbf{f}_{ck}}{20}\right)^{0,2}$	5				
Concrete cone failure								(20)					
Effective anchorage depth	n h _{ef}	[mm]	90	105	125	145	160	115	170	190	170	200	225
Maximum long-term temper No performance assessed			short-te	erm tem	peratur	e							
Injection System VMZ													

	aracteristic value tic and quasi-stat			r Ioad	d, VM	Z-A M	8 – M	12,					
Anchor size	VM2	<u>Z-A</u>	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Installation facto	r γinst	[-]						1,0					
Steel failure wit	thout lever arm												
Characteristic	Steel, zinc plated	[kN]	1	4	2	:1				34			
resistance V ⁰ _{Rk,s}	A4, HCR	[kN]	1	5	2	3				34			
Partial factor	γMs	[-]						1,25					
Factor for ductili	ty k7	[-]						1,0					
Steel failure wit	th lever arm												
Characteristic bending	Steel, zinc plated	[Nm]	3	80	6	0				105			
resistance Mo _{Rk,s}	A4, HCR	[Nm]	3	80	6	0				105			
Partial factor	γMs	[-]						1,25					
Concrete pry-o	ut failure												
Pry-out factor	k8	[-]		2									
Concrete edge													
Effective length in shear load	of anchor I _f	[mm]	40	50	60	75	75	70	80	95	100	110	125
Diameter of and	hor d _{nom}	[mm]	1	0	1	2	12			1	4		
Performance Characteristic v	Injection System VMZ Performance Characteristic values for shear load, VMZ-A M8 – M12, static and quasi-static action										An	nex C	:4

Anchor size	VMZ	:-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Installation factor	γinst	[-]						1,0					
Steel failure withou	t lever arm												
Characteristic resistance -	Steel, zinc plated	[kN]			63			70		9 ¹⁾ 8)		178 ¹⁾ (141)	
V ⁰ _{Rk,s}	A4, HCR	[kN]			63			86		1 ¹⁾ 6)		156 ¹⁾ (123)	
Partial factor	γMs	[-]			1,25			1,4	1,	25		1,25	
Factor for ductility	k 7	[-]						1,0					
Steel failure with level	ver arm												
Characteristic bending resistance _	Steel, zinc plated	[Nm]			266			392	51	19		896	
M ⁰ Rk,s	A4, HCR	[Nm]			266				454			784	
Partial factor	γMs	[-]			1,25			1,4	1,	25		1,25	
Concrete pry-out fa	ilure												
Pry-out factor	k8	[-]						2,0					
Concrete edge failu	re												
Effective length of anchor in shear load	lf	[mm]	90	105	125	145	160	115	170	190	170	200	225
Diameter of anchor	d_{nom}	[mm]			18			22	2	4		26	
¹⁾ This value may only b	e applied if It	≥ 0,5 t _{fi} ,	ĸ										
						<u>M20</u>	+ M24	:					
					1	l _t ≥ (0,5 tfix	-					

tfix

Injection System VMZ

Performance

Characteristic values for **shear load**, **VMZ-A M16 – M24**, static and quasi-static action

Г

Tension loads		VMZ	A	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Installation factor	r	γinst	[-]					1,0				
Steel failure, ste	eel zinc plated, stai	inless steel A4,	HCR							-		
Characteristic re	sistance	Nrk,s,C1 Nrk,s,C2	[kN]	2	5	35	49	5	4		57	
Partial factor		γMs	[-]					1,5				
Pull-out (concre	te C20/25 to C50/60))										
	N _{Rk,p,C1} —	50°C / 80°C ¹⁾	[kN]	14	,5	14	,5	30),6	36,0	41,5	42,8
Characteristic	ТКК,р,СТ	72°C / 120°C ¹⁾	[kN]	10	,9	10	,9	20),0		30,0	
resistance	N Rk,p,C2 —	50°C / 80°C ¹⁾	[kN]	7,	4	7	4	8	,7		17,6	
	· · · · · · · · · · · · · · · · · · ·	72°C / 120°C ¹⁾	[kN]	5,	1	5	1	6	,5		12,3	
Shear loads												
Steel failure wit	hout lever arm, ste	el zinc plated										
	· .	VRk,s,C1	[kN]	1	1,8				27,2			
Characteristic res	sistance	V _{Rk,s,C2}	[kN]	12	2,6				27,2			
Partial factor		γMs	[-]					1,25				
Steel failure wit	hout lever arm, sta	inless steel A4,	, HCR	-								
Characteristic res	sistance	V _{Rk,s,C1}	[kN]	12	2,9				27,2			
		VRk,s,C2	[kN]	1:	8,8				27,2			
Partial factor		γMs	[-]					1,25				
Factor for anchorages —	filled annular gap	αgap	[-]					1,0				
with l	unfilled annular gap	$lpha_{ ext{gap}}$	[-]					0,5				

Z62078.21

performance category C1 and C2

Page 28 of European Technical Assessment ETA-04/0092 of 4 August 2021

English translation prepared by DIBt

Anchor size	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	
Tension loads													1-
Installation factor	γinst	[-]						1,0					
Steel failure, steel z	inc plated												
Characteristic resistance	Nrk,s,C1 Nrk,s,C2	[kN]	88	95	11	1	97	96	18	8		222	
Steel failure, stainle	ss steel A4, HC	R											
Characteristic resistance	Nrk,s,C1 Nrk,s,C2	[kN]	88	95	11	1	97	114	16	5		194	
Partial factor	γMs	[-]			1,5			1,68	1,	5		1,5	
Pull-out (concrete C	20/25 to C50/60)												
NRK,P,C1	50°C / 80°C ¹⁾	[kN]	30,7	38,7		43,7		44,4	88	,2		90,7	
Charac-	72°C / 120°C ¹⁾	[kN]	25,0	30,0		38,5		29,4	55	,8		59,3	
ragiotanaa	50°C / 80°C ¹⁾	[kN]	16,3	22,1		26,1		30,9	59	,7		59,7	
INRK, p, C2	72°C / 120°C ¹⁾	[kN]	10,5	14,4		19,5		16,2	44	,4		44,4	
Steel failure without Characteristic resistance	VRk,s,C1 VRk,s,C2	[kN]			39,1 50,4			39,1 51	82,3 108,8	3 1)	15	107 4,9 ¹⁾	
Partial factor		[-]			1,25			1,4	(71,5 1,25	· ·		22,7) 1,25	
Steel failure without	_{۲Ms} Iever arm. staiı		l steel /	A4. HC				1,4	1,2,			1,20	
	V _{Rk,s,C1}	[kN]		,	39,1			39,1	72,2	2		93	
Characteristic resistance	V _{Rk,s,C2}	[kN]			50,4			62,6	95,6 (62,	1)		5,7 ¹⁾ 107)	
^D artial factor	γMs	[-]			1,25			1,4	1,2	5	1	,25	
	nular gap α_{gap}	[-]						1,0					
with	d annular gap ^{αgap}	[-]						0,5					
This value may only be	appiled if it ≥ 0,5 f	fix, (See	Annex	(U4)									

Characteristic values for **seismic action**, VMZ-A M16 – M24, performance category C1 and C2

Anchor size	VM	Z-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Tension load in cracked concrete	Ν	[kN]	4,3	6,1	8,0	11,1	11,1	10,0	12,3	15,9	17,1	19,8	24,0
Dianlagoment	δνο	[mm]	0,	5	0,5	0,6			0,6			0	,7
Displacement	δn∞	[mm]			•			1,3					
Tension load in uncracked concrete	Ν	[kN]	4,3	8,5	11,1	15,6	15,6	14,1	17,2	19,0	24,0	23,8	23,8
Displacement	δνο	[mm]	0,2	0,4	0	4			0,4			0	,6
Displacement	δn∞	[mm]						1,3					
Displacements under seismic te	nsion	loads	C2										
Displacements for DLS $\delta_{N,i}$	C2(DLS)	[mm]	no pe		1,	0	1,	0	1	,3		1,1	
Displacements for ULS $\delta_{N,i}$	C2(ULS)	[mm]	ma asse	nce ssed	3,	0	3,	0	3	,9		3,0	

Table C9: Displacements under tension loads, VMZ-A M16 – M24

Anchor size	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Tension load in cracked concrete	Ν	[kN]	14,6	18,4	24,0	30,0	34,7	21,1	38,0	44,9	38,0	48,5	57,9
Displacement	δνο	[mm]		0,7		0,8	1,2	0,7	0	,8	0,8	0	,9
Displacement	δn∞	[mm]		1	,3		1,6	1,1	1	,3		1,3	
Tension load in uncracked concrete	N	[kN]	20,5	25,9	33,0	35,7	48,1	29,6	53,3	63,0	53,3	67,9	81,1
Displacement	δνο	[mm]		0	,6		0,8	0,5	0	,6		0,6	
Displacement	δn∞	[mm]		1	,3		1,6	1,1	1	,3		1,3	
Displacements under seismic te	nsion	loads	C2										
Displacements for DLS $\delta_{N,N}$	C2(DLS)	[mm]	1	,6		1,5		1,7	1	,9		1,9	
Displacements for ULS $\delta_{N,N}$	C2(ULS)	[mm]	3	,7		4,4		4,0	4	,5		4,5	

Injection System VMZ

Performance Displacements under tension loads, VMZ-A

Table C10: Displacem	ents un	der sl	near l	oads	VMZ	-A M	3 – M	12					
Anchor size	VM	Z-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Shear load	V	[kN]	8,	3	13	,3				19,3			
Dianlacomente	δvo	[mm]	2,4	2,5	2,	9				3,3			
Displacements	δv∞	[mm]	3,6	3,8	4,	4				5,0			
Displacements under sei	smic shea	ar load	s C2										
Displacements for DLS	δ V,C2(DLS)	[mm]		erfor-	2,	1				2,5			
Displacements for ULS	$\delta_{V,C2(ULS)}$	[mm]		nce ssed	3,	7				5,1			

Table C11: Displacements under shear loads VMZ-A M16 – M24

Anchor size	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Shear load	V	[kN]			36			44		5 9)		89 (71)	
Displacements	δvo	[mm]			3,8			3,0	4 (3	,3 ,0)		4,6 (3,5)	
Displacements	δν∞	[mm]			5,7			4,5	6 (4	5 5)		6,9 (5,3)	
Displacements under seism	ic shea	r load	s C2										
Displacements for DLS δ_V	,C2(DLS)	[mm]			2,9				3,5			3,7	
Displacements for ULS δ_V	',C2(ULS)	[mm]			6,8				9,3			9,3	

Injection System VMZ

Performance Displacements under shear loads, VMZ-A

Anchor size		V	/MZ- IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Installation factor		γinst	[-]	INIC		INIC	INIO			,0					
Steel failure		The								, -					
Characteristic	Steel, zinc p	blated	[kN]	15	16	19	29	3	5		67		52	125	108
resistance $N_{Rk,s}$	A4,	HCR	[kN]	1	1	19	21	3	3		47		65	88	94
Partial factor		γMs	[-]						1	,5					•
Pull-out															
Characteristic res	sistance (concre	te C20)/25)												
uncracked	50°C / 80°C ¹⁾	No	[kN]	9	17,4	22,9	32	28,8	35,2	42	52,9	68,8	60,7	109	109
concrete ·	72°C / 120°C ¹⁾	N _{Rk,p}	[kN]	6	9	16	16	16	25	25	35	50	40	75	95
cracked	50°C / 80° C ¹⁾	М	[kN]	8,7	12,2	16	22,4	20,2	24,6	29,4	37,1	48,1	42,5	76,3	76,3
concrete 7	2°C / 120° C ¹⁾	N _{Rk,p}	[kN]	5	7,5	12	12	16	20	20	30	50	30	60	75
Splitting															
Splitting for star	ndard thickness	s of co	oncret	e											
Standard thickne	ss of concrete h	lmin,1 ≥	[mm]	1(00	120	150	140	160	180	200	250	230	340	340
Case 1															
Characteristic res	N	0 _{Rk,sp}	[kN]	7,5	9	16	20	20	35,2	40	50	50	60,7	109	109
(concrete C20/25 Case 2)														
Characteristic ed	de distance	C _{cr.sp}	[mm]	3	h _{ef}	2.5h _{ef}	3.5h _{ef}	2,5h _{ef}	1.5hef		2 h _{ef}		1.5	h _{ef}	1,5he
Splitting for min						_,	-,	_,	.,				- 1 -		.,
Minimum thickne					0	100	110	1.	10	130	150	160	160	220	220
Case 1		min,2 <	[]	0	0	100	110	I	10	130	150	100	100	220	220
Characteristic res (concrete C20/25	N 1	0 _{Rk,sp}	[kN]	7,5	2)	1	6	20	25	35	50	40	2)	75	109
Case 2	,														
Characteristic ed	ge distance	Ccr,sp	[mm]	3h _{ef}	3,5h _{ef}	3h _{ef}	3,5h _{ef}	3,5h _{ef}	3h _{ef}	2,5h _{ef}	2,5h _{ef}	3h _{ef}	2,5h _{ef}	2,6h _{ef}	2,6he
Increasing factor N _{Rk,p} and N ⁰ _{Rk,sp} (Ψο	[-]						$\left(\frac{f_{ck}}{20}\right)$	-)0,5	<u>.</u>				-
Concrete cone f	ailure														
Effective anchora	age depth	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
¹⁾ Maximum long-ter ²⁾ No performance a		laximu	m short	-term	temper	ature									

Injection System VMZ

Performance Characteristic values for tension loads, VMZ-IG

Anchor size	VI	MZ-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Installation factor	γinst	[-]						1	,0					
Steel failure without lever a	rm													
Characteristic Steel,	zinc plated	[kN]	8,	,0	9,5	15	1	8		34		26	63	54
resistance V ⁰ _{Rk,s}	A4, HCF	[kN]	5,	,5	9,5	10	1	6		24		32	44	47
Partial factor	γMs	[-]						1,	25					
Ductility factor	k 7	[-]						1	,0					
Steel failure with lever arm					-		_		_			_		_
Characteristic Steel,	zinc plated	[kN]	1	2	3	0	6	0		105		212	266	51
bending ————————————————————————————————————	A4, HCF	[kN]	8,	,5	2	21	4	·2		74		187	187	36
Partial factor	γMs	[-]						1,	25			1		
Concrete pry-out failure	,							,						
Pry-out factor	k8	[-]						2	,0					
Concrete edge failure		•	-											
_		[mm]	40	50	60	75	70	80	90	105	125	115	170	17
	lf	1												
shear load Outside diameter of anchor able C14: Displaceme	d _{nom}	[mm]			, VM		1 70	4	90	18 105	125	22	24 170	
Effective length of anchor in shear load Outside diameter of anchor Fable C14: Displaceme Anchor size	d _{nom}	[mm]	on lo		_	_	70		90 M12	18 105 M12	125 M12	115	170	17
shear load Outside diameter of anchor Table C14: Displaceme	d _{nom}	[mm] tensi MZ-IG	on lo 40 M6 4,3	50 M6 6,1	, ∨M 60 M8 8,0	Z-IG 75 M8 11,1	70 M10 10,0	80 M10 12,3		105 M12 18,4		115 M16 21,1	170 M16 38,0	17 M2 38,
shear load Outside diameter of anchor Fable C14: Displacemen Anchor size Tension load in cracked concr	d _{nom} nts under ν τete Ν δια	[mm] tensi MZ-IG [kN] [mm]	on lo 40 M6	50 M6 6,1	, ∨M 60 M8	Z-IG 75 M8	70 M10 10,0 0,	80 M10 12,3	M12	105 M12	M12	115 M16 21,1 0,7	170 M16 38,0 0,8	17 M2 38, 0,8
shear load Outside diameter of anchor Fable C14: Displaceme Anchor size Tension load in cracked concr Displacement	d _{nom} nts under ν rete Ν δινα δινα	[mm] tensi MZ-IG [kN] [mm] [mm]	on k 40 M6 4,3 0,	50 50 M6 6,1 5	, ∨M 60 M8 8,0 0,5	Z-IG 75 M8 11,1 0,6	70 M10 10,0 0, 1,3	80 M10 12,3 6	M12 14,6	105 M12 18,4 0,7	M12 24,0	115 M16 21,1 0,7 1,1	170 M16 38,0 0,8 1,3	17 M2 38, 0,8
shear load Outside diameter of anchor Fable C14: Displacemen Anchor size Tension load in cracked concr	d _{nom} nts under vete Ν <u>δνα</u> δνα ncrete Ν	[mm] tensi MZ-IG [kN] [mm] [kN]	on k 40 4,3 0, 4,3	50 50 6,1 5 8,5	, ∨M 60 M8 8,0 0,5	Z-IG 75 M8 11,1 0,6 15,6	70 M10 10,0 0, 1,3 14,1	80 M10 12,3 6 17,2	M12	105 M12 18,4 0,7 25,9	M12	115 M16 21,1 0,7 1,1 29,6	170 M16 38,0 0,8 1,3 53,3	38, 0,8 1,3 53,
shear load Outside diameter of anchor Table C14: Displacemen Anchor size Tension load in cracked concr Displacement Tension load in uncracked co	d _{nom} nts under ν ete Ν <u>δ</u> Να ncrete Ν	[mm] tensi MZ-IG [kN] [mm] [kN] [kN] [mm]	on k 40 M6 4,3 0,	50 50 M6 6,1 5	, ∨M 60 M8 8,0 0,5	Z-IG 75 M8 11,1 0,6 15,6	70 M10 10,0 0, 1,3 14,1 0,	80 M10 12,3 6 17,2	M12 14,6	105 M12 18,4 0,7	M12 24,0	115 M16 21,1 0,7 1,1 29,6 0,5	170 M16 38,0 0,8 1,3 53,3 0,6	17 M2 38, 0,8 1,3 53, 0,6
shear load Outside diameter of anchor Fable C14: Displaceme Anchor size Tension load in cracked concr Displacement	d _{nom} nts under vete Ν <u>δνα</u> ncrete Ν <u>δνα</u>	[mm] tensi MZ-IG [kN] [mm] [kN] [mm] [mm]	40 46 4,3 0, 4,3 0,2	50 50 6 ,1 5 8,5 0,4	, ∨M 60 M8 8,0 0,5 11,1 0,	Z-IG 75 M8 11,1 0,6 15,6 4	70 M10 10,0 0, 1,3 14,1	80 M10 12,3 6 17,2	M12 14,6	105 M12 18,4 0,7 25,9	M12 24,0	115 M16 21,1 0,7 1,1 29,6	170 M16 38,0 0,8 1,3 53,3	17 M2 38, 0,8 1,3 53, 0,6
shear load Outside diameter of anchor Table C14: Displacemen Anchor size Tension load in cracked concr Displacement Tension load in uncracked con Displacement Fable C15: Displacemen	d _{nom} nts under ν ete Ν ΔΝα δΝα δΝα πts under	[mm] tensi MZ-IG [kN] [mm] [kN] [mm] [mm]	40 46 4,3 0, 4,3 0,2	50 50 6 ,1 5 8,5 0,4	, ∨M 60 M8 8,0 0,5 11,1 0,	Z-IG 75 M8 11,1 0,6 15,6 4	70 M10 10,0 0, 1,3 14,1 0,	80 M10 12,3 6 17,2	M12 14,6	105 M12 18,4 0,7 25,9	M12 24,0	115 M16 21,1 0,7 1,1 29,6 0,5	170 M16 38,0 0,8 1,3 53,3 0,6	17 M2 38, 0,8
shear load Outside diameter of anchor Table C14: Displacemen Anchor size Tension load in cracked concr Displacement Tension load in uncracked con Displacement Fable C15: Displacemen Anchor size	d _{nom} nts under ν ete Ν ΔΝα δΝα δΝα πts under	[mm] tensi MZ-IG [kN] [mm] [kN] [mm] [mm]	on k 40 4,3 0, 4,3 0,2 r loa	50 50 M6 6,1 5 8,5 0,4 0,4	, ∨M 60 M8 8,0 0,5 11,1 0, ∕MZ-	Z-IG 75 M8 11,1 0,6 15,6 4	70 M10 10,0 0, 1,3 14,1 0, 1,3 70	80 M10 12,3 6 17,2 4 80	M12 14,6 20,5	105 M12 18,4 0,7 25,9 0,6	M12 24,0 33,0	115 M16 21,1 0,7 1,1 29,6 0,5 1,1	170 M16 38,0 0,8 1,3 53,3 0,6 1,3	17 M2 38, 0,8 1,5 53, 0,6 1,5 1,7
shear load Outside diameter of anchor Table C14: Displacemen Anchor size Tension load in cracked concr Displacement Tension load in uncracked co Displacement Fable C15: Displacemen Anchor size Shear load	d _{nom} nts under ν ete Ν ΔΝα δΝα δΝα πts under	[mm] tensi MZ-IG [kN] [mm] [kN] [mm] [mm] [mm] m] m]	on k 40 4,3 0, 4,3 0,2 r loa 40	50 8,5 0,4 50 M6 50 M6	, ∨M 60 M8 8,0 0,5 11,1 0, ∕MZ- 60	Z-IG 75 M8 11,1 0,6 15,6 4 IG 75	70 M10 10,0 0, 1,3 14,1 0, 1,3 70	80 M10 12,3 6 17,2 4 80 M10	M12 14,6 20,5 90	105 M12 18,4 0,7 25,9 0,6	M12 24,0 33,0 125	115 M16 21,1 0,7 1,1 29,6 0,5 1,1	170 M16 38,0 0,8 1,3 53,3 0,6 1,3 1,3	17 M2 38, 0,3 1,5 53, 0,6 1,5 17
shear load Outside diameter of anchor Table C14: Displacemen Anchor size Tension load in cracked concr Displacement Tension load in uncracked co Displacement Fable C15: Displacemen Anchor size Shear load Steel, zinc plated	d _{nom} nts under ν rete Ν δΝα δΝα δΝα δΝα δΝα ν	[mm] tensi MZ-IG [kN] [mm] [kN] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	on k 40 4,3 0, 4,3 0,2 r loa 40 M6 4,	50 50 M6 6,1 5 8,5 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,5 0,4 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 	, ∨M 60 M8 8,0 0,5 11,1 0, 11,1 0, /MZ- 60 M8 5,4	Z-IG 75 M8 11,1 0,6 15,6 4 IG 75 M8 8,4	70 M10 10,0 0, 1,3 14,1 0, 1,3 70 M10	80 M10 12,3 6 17,2 4 80 M10 ,1	M12 14,6 20,5 90	105 M12 18,4 0,7 25,9 0,6 0,6 105 M12	M12 24,0 33,0 125	115 M16 21,1 0,7 1,1 29,6 0,5 1,1 1,1 115 M16 14,8	170 M16 38,0 0,8 1,3 53,3 0,6 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	17 M2 38, 0,0 1,3 53, 0,0 1,3 1,3 17 M2 30,
shear load Outside diameter of anchor Table C14: Displacemen Anchor size Tension load in cracked concr Displacement Tension load in uncracked co Displacement Fable C15: Displacemen Anchor size Shear load Steel, zinc plated	d _{nom} nts under v rete Ν ΔΝνα ncrete Ν ΔΝνα nts under N ν Δνα ν Δνα Δνα Δνα Δνα Δνα Δνα Δνα Δνα	[mm] [mm] tensi MZ-IG [kN] [mm] [kN] [mm] [kN] [mm] [kN] [mm] [kN] [mm] [mm] [mm] [mm] [mm] [mm]	on k 40 4,3 0,2 4,3 0,2 r loa 40 M6	50 6 50 6 6 6 6 4	, ∨M 60 M8 8,0 0,5 11,1 0, /MZ- 60 M8	Z-IG 75 M8 11,1 0,6 15,6 4 IG 75 M8	70 M10 10,0 1,3 14,1 0, 1,3 70 M10	80 M10 12,3 6 17,2 4 80 M10 ,1 5	M12 14,6 20,5 90	105 M12 18,4 0,7 25,9 0,6 105 M12	M12 24,0 33,0 125	115 M16 21,1 0,7 1,1 29,6 0,5 1,1 1,1	170 M16 38,0 0,8 1,3 53,3 0,6 1,3 1,3	17 M2 388, 0,; 53, 0,(1,; 17 M2 300, 1,;
shear load Outside diameter of anchor Table C14: Displacemen Anchor size Tension load in cracked concr Displacement Tension load in uncracked co Displacement Fable C15: Displacemen Anchor size Shear load	d _{nom} nts under ν rete Ν δΝα δΝα δΝα δΝα δΝα ν	[mm] [mm] tensi MZ-IG [kN] [mm] [kN] [mm] [kN] [mm] [kN] [mm] [kN] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	on lo 40 4,3 0,2 4,3 0,2 r loa 40 M6 4, 0,	50 50 M6 6,1 5 0,4 6 6 4 7	, ∨M 60 M8 8,0 0,5 11,1 0,5 /MZ- 60 M8 5,4 0,5	Z-IG 75 M8 11,1 0,6 15,6 4 IG 75 M8 8,4 0,4	70 M10 10,0 1,3 14,1 0, 1,3 70 M10 10 0,	80 M10 12,3 6 17,2 4 80 M10 ,1 5 8	M12 14,6 20,5 90	105 M12 18,4 0,7 25,9 0,6 0,6 105 M12 19,3 1,2	M12 24,0 33,0 125	115 M16 21,1 0,7 1,1 29,6 0,5 1,1 115 M16 14,8 0,8	170 M16 38,0 0,8 1,3 53,3 0,6 1,3 1,3 170 M16 35,8 1,9	17 M2 38, 0,; 1,; 53, 0,(1,; 17 M2
shear load Outside diameter of anchor Table C14: Displacemen Anchor size Tension load in cracked concr Displacement Tension load in uncracked co Displacement Fable C15: Displacemen Anchor size Shear load Steel, zinc plated Displacement Shear load	d _{nom} nts under v rete N ΔNe ncrete N ΔNe ncrete N ΔNe N ΔNe N ΔNe N ΔNe ΔNe ΔNe ΔNe ΔNe	[mm] [mm] tensi MZ-IG [kN] [mm] [kN] [mm] [kN] [mm] [kN] [mm] [kN] [mm] [mm] [mm] [kN] [kN] [kN] [kN]	on lo 40 M6 4,3 0,2 4,3 0,2 r loa 40 M6 4, 0, 0, 0,	50 50 M6 6,1 5 0,4 6 6 4 7 2	, ∨M 60 M8 8,0 0,5 11,1 0,5 60 M8 5,4 0,5 0,8	Z-IG 75 M8 11,1 0,6 15,6 4 IG 75 M8 8,4 0,4 0,7	70 M10 10,0 1,3 14,1 0, 1,3 70 M10 10 0, 0,	80 M10 12,3 6 17,2 4 8 80 M10 ,1 5 8 8 3	M12 14,6 20,5 90	105 M12 18,4 0,7 25,9 0,6 0,6 105 M12 19,3 1,2 1,9	M12 24,0 33,0 125	115 M16 21,1 0,7 1,1 29,6 0,5 1,1 1,1 115 M16 14,8 0,8 1,2	170 M16 38,0 0,8 1,3 53,3 0,6 1,3 1,3 170 M16 35,8 1,9 2,8	17 M2 388, 0,8 53, 0,1, 1,5 30, 1,5 30, 1,5